A number of studies have demonstrated the pivotal role of collagen molecules in modulating cell growth and differentiation. In order to analyze the direct effects of collagen type I on the osteoblastic phenotype, we have devised an in vitro culture system for studying the interactions between bovine collagen type I and Saos-2 cells, a human osteoblastic cell line. Saos-2 cells were cultured both on top of collagen-coated culture dishes as well as inside a three-dimensional collagen network. Plating on dishes treated with collagen induced maximal adhesion of Saos-2 cells after 24-hour incubation. Cells cultured on collagen gel matrix expressed about 2.5-fold more alkaline phosphatase when compared with untreated plastic dishes. On collagen-coated dishes the responsiveness of Saos-2 cells to parathyroid hormone was decreased, whereas no modifications were observed in the effect of vasoactive intestinal peptide on these cells. Using a microfluorimetric measurement of DNA, an increase of proliferation was observed in Saos-2 cells cultured on collagen gel. Saos-2 cells were also able to colonize collagen sponges and in this three-dimensional network they were able to synthesize osteocalcin, as assessed both by immunocytochemistry and radioimmunoassay. In this study we have demonstrated that bovine collagen type I exhibits favorable effects on attachment and functional and growth activities of a human osteoblastic cell line, encouraging its use as a bone graft material.