The role of NO-formation induced by accumulated endogenous bradykinin (BK) via local ACE-inhibition with ramiprilat (RT) or by adding BK exogenously was evaluated in cultured bovine aortic endothelial cells (BAEC) and in isolated rat hearts with post-ischaemic reperfusion injuries. Furthermore we used the n-octyl-ester of ramipril (RA-octil) which was shown to have no ACE-inhibitory action. In BAEC, ACE-inhibition by RT (1 x 10(-8)-1 x 10(-6) mol/l) or addition of BK (1 x 10(-8)-1 x 10(-6) mol/l) stimulated the formation of NO and prostacyclin (PGI2) as assessed by endothelial cyclic GMP- and 6-keto-PGF1a formation. Cyclic GMP and PGI2 synthesis was completely suppressed by the NO synthase inhibitor NG-nitro-L-arginine (L-NNA, 1 x 10(-5) mol/l) and by the B2 kinin receptor antagonist HOE 140 (1 x 10(-7) mol/l). RA-octil (1 x 10(-8)-1 x 10(-4) mol/l) did not affect endothelial cyclic GMP production in BAEC. In isolated working rat hearts subjected to local ischemia with reperfusion both RT (1 x 10(-8) mol/l) and BK (1 x 10(-9) mol/l) reduced the incidence and duration of ventricular fibrillation. In parallel myocardial function (left ventricular pressure, coronary flow) and metabolism (high energy rich phosphates) were improved showing a comparable fingerprint for RT and BK. Addition of L-NNA (1 x 10(-6) mol/l) or HOE 140 (1 x 10(-9) mol/l) abolished these protective effects of RT and BK. As in the BAEC studies RA-octil was without beneficial effects on the isolated ischaemic rat heart. The findings on BAEC show that inhibition of ACE localized on the luminal side of the vascular endothelium results in increased synthesis of NO and prostacyclin by local accumulation of endothelium-derived BK. Similar mechanisms may occur in the ischaemic rat heart leading to cardioprotection.