Shigella flexneri causes bacillary dysentery by invading epithelial cells of the colonic mucosa. The invasion process requires the synthesis and secretion of the virulence plasmid-encoded Ipa proteins. Using TnphoA mutagenesis, we have identified two virulence plasmid genes, mxiJ and mxiM, that encode proteins exported by the general export pathway. Analysis of the MxiJ and MxiM deduced amino acid sequences suggested that mxiJ and mxiM might encode lipoproteins, which was confirmed by [3H]palmitate labeling of MxiJ:PhoA and MxiM:PhoA fusion proteins. A mxiJ mutant was unable to invade HeLa cells, to induce the formation of plaques on confluent monolayers of HeLa cells, and to provoke keratoconjunctivitis in guinea pigs. In addition, secretion of seven polypeptides, including IpaA, IpaB, and IpaC, was abolished in the mxiJ mutant. Sequence comparisons indicated that MxiJ and MxiH, which is encoded by a gene located upstream from mxiJ, are homologous to the Yersinia enterocolitica YscJ and YscF proteins, respectively.