Previous studies have demonstrated that low shear rates promote leukocyte adherence to microvascular endothelium in postcapillary venules. The objective of this study was to determine whether an accumulation of inflammatory mediators such as platelet activating factor and leukotriene B4 is responsible for shear rate-dependent leukocyte-endothelial cell adhesion. Postcapillary venules (25-39 microns in diameter) in cat mesentery were studied by intravital microscopy. Venular wall shear rate was varied over a wide range by graded occlusion of the mesenteric artery. Red blood cell velocity, vessel diameter, leukocyte rolling velocity, and the numbers of rolling and adherent leukocytes were measured at each shear rate. In one series of experiments, shear rate-dependent leukocyte adherence was monitored at different superfusion rates (1.0 and 2.5 ml/min). At the lower superfusion rate, the number of adherent leukocytes was significantly higher at any given shear rate when compared with results obtained at the higher superfusion rate. This suggests that reduced washout of inflammatory mediators contributes to shear rate-dependent leukocyte adhesion. Pretreatment with different platelet activating factor receptor antagonists (WEB 2086 or WEB 2170) had no effect on the number of adherent leukocytes normally observed at lower shear rates, suggesting that platelet activating factor does not play a major role in this process. However, shear rate-dependent leukocyte adhesion was largely prevented by pretreatment with either a leukotriene B4 receptor antagonist (SC-41930) or a leukotriene synthesis inhibitor (L663,536). The results of this study indicate that a reduced washout of leukotriene B4 is responsible for the enhanced leukocyte adherence that occurs at low venular wall shear rates.