The multidrug-resistance gene, MDR1 is expressed in many normal tissues, but little is known about its expression in normal hematopoietic cells. Using the monoclonal antibody C219 and flow cytometric analysis, P-glycoprotein (P-gp) was found to be expressed in all peripheral blood (PB) subpopulations (CD4, CD8, CD14, CD19, CD56) except granulocytes. To specifically determine MDR1 gene expression, these PB subpopulations were isolated by fluorescence-activated cell sorting (FACS) and analyzed for MDR1 mRNA by polymerase chain reaction (PCR). All subsets were positive by PCR, but only minimal MDR1 mRNA was detected in monocytes and granulocytes. Significant efflux of Rhodamine-123 (Rh-123), a measure of P-gp function, was detected in CD4+, CD8+, CD14+, CD19+, and CD56+ cells but not in granulocytes. Next, PCR-analysis was performed on FACS-sorted bone marrow (BM) cells to assess MDR1 expression in different maturational stages. Precursors (CD34+), early and late myeloid cells (CD33+/CD34+, CD33+/CD34-) as well as lymphocytes of the B-cell lineage (CD19+/CD10+, CD19+/CD10-) expressed the MDR1 gene. BM monocytic cells (CD33++/CD34-) were negative, and a very weak signal was detected in erythroid cells (glycophorin A+). Significant Rh-123 efflux was found in CD34+, CD10+, CD33+, and CD33++ BM cells, but not in glycophorin A+ cells. We conclude that PB and BM lymphocytes, PB monocytes, BM progenitors, and immature myeloid cells, but not late BM monocytes, erythroid cells, and PB granulocytes, express MDR1 mRNA and a functional P-gp. These results have to be taken into account when MDR1 expression is determined in tumor samples containing normal blood cells.