The Epstein-Barr virus (EBV) major envelope glycoprotein gp340 is the subject of current efforts to develop an EBV subunit vaccine. The importance of gp340-specific humoral immunity has been highlighted by studies of natural infection in humans and gp340 immunization of experimental animals. The former studies have demonstrated the presence of gp340-specific serum antibodies which mediate EBV neutralization, complement fixation, and antibody-dependent cellular cytotoxicity. The latter studies have often shown a correlation between the induction of gp340-specific EBV-neutralizing antibodies and protection from virus challenge. We have used a series of bacterial beta-galactosidase-gp340 fusion proteins and overlapping synthetic peptides from the gp340 open reading frame to map the positions of B-cell epitopes within the gp340 primary amino acid sequence. The data reported here indicate the presence of B-cell epitopes within the carboxy-terminal third of the gp340 polypeptide chain. These epitopes could not be detected with a peptide enzyme-linked immunosorbent assay, thereby suggesting that they are discontinuous. Affinity purification of antibodies with a gp340 fusion protein from the carboxy terminus of the gp340 polypeptide chain has been used to show that these antibodies are not EBV neutralizing in vitro. The consequences of these findings for future EBV vaccine development are considered.