Peptide mediators or neuropeptides released from sensory nerves may induce inflammatory effects in airways, but their effects on airway blood velocity and lung resistance have not been previously studied simultaneously in awake animals. Nine adult sheep were chronically prepared for continuous measurement of blood flow velocity to the distal trachea and bronchi by surgical implantation of a 20-MHz pulsed Doppler flow probe on the common bronchial branch of the bronchoesophageal artery. Awake restrained animals were intubated and connected to a pneumotachograph to measure resistance to airflow across the lung (RL). Doubling doses of bradykinin (BK, 0.02-1.51 nmol/kg), calcitonin gene-related peptide (CGRP, 0.004-0.26 nmol/kg), or substance P (SP, 0.02-1.19 nmol/kg) were injected as a bolus into the right atrium while mean arterial pressure (MAP), bronchial blood velocity (Vbr), and RL were measured. BK at 0.76 nmol/kg caused a transient dose-related increase in Vbr from a baseline of 19.3 +/- 2.5 to 41.4 +/- 4.1 (SE) cm/s (P less than 0.05) despite a decrease in MAP from 118 +/- 6 to 80 +/- 6 mmHg. CGRP at 0.26 nmol/kg caused a transient dose-related increase in Vbr from 16.8 +/- 2.7 to 25.3 +/- 4.7 cm/s (P less than 0.05) despite a decrease in MAP from 113 +/- 5 to 87 +/- 8 mmHg. Neither BK nor CGRP affected RL. SP at 1.19 nmol/kg transiently increased Vbr from 18.3 +/- 2.3 to 45.1 +/- 8.3 cm/s (P less than 0.05), MAP from 138 +/- 9 to 162 +/- 15 mmHg, and RL from 4.5 +/- 1.0 to 106.6 +/- 62.1 cmH2O.l-1.s.(ABSTRACT TRUNCATED AT 250 WORDS)