Motoneurones are known to die (1) during embryonic development (naturally occurring cell death), (2) early in postnatal development after axonal injury, and (3) as a consequence of disease, such as spinal muscular atrophy or (in later life) amyotrophic lateral sclerosis. Naturally occurring motoneurone death has been extensively investigated, and interaction with the target muscle has emerged as an important factor for survival of embryonic motoneurones. Evidence that this target dependence of motoneurones continues postnatally is discussed in this review, as is the possible nature of the retrograde signal from the muscle. An explanation for the role of the muscle in motoneurone survival is also proposed, which may be applicable in situations where motoneurone death occurs postnatally. This proposal takes into account the changing functional demands imposed on motoneurones as a result of the gradual maturation of the CNS, and suggests that during development the muscle induces the motoneurones to become competent to carry out these requirements.