1. Single and dual intracellular recordings were performed in neocortical slices obtained from tissue samples surgically removed from children (8 mo to 15 yr) for the treatment of intractable epilepsy. Electrical stimulation and glutamate microapplication were used to study local synaptic inputs to pyramidal cells. 2. In recordings with potassium-acetate electrodes, activation of presynaptic neocortical neurons with glutamate microdrops did not elicit a clear increase in postsynaptic potentials (PSPs) but did suppress current-evoked repetitive spike firing in recorded neurons. Bicuculline (10 microM) blocked this effect, suggesting it was caused by the activation of presynaptic gamma-aminobutyric acid (GABA) cells. In recordings with KCl electrodes, glutamate microdrops elicited an increase in the frequency and amplitude of depolarizing PSPs. Bicuculline (5-10 microM) blocked the glutamate-evoked PSPs, suggesting they were reversed GABAA-receptor-mediated inhibitory postsynaptic potentials (IPSPs). In one cell recorded with a KCl electrode (total n = 8), current-evoked spike trains elicited afterdischarges of reversed IPSPs, thus revealing a recurrent inhibitory circuit. Therefore local inhibitory synaptic circuits were robust and could be observed in tissue from patients as young as 11 mo. 3. In addition to short-latency (10-25 ms), monosynaptic excitatory postsynaptic potentials (EPSPs), electrical stimulation at low intensities sometimes elicited delayed EPSPs (20-60 ms). When GABAA-receptor-mediated synaptic inhibition was partially reduced in bicuculline (5-10 microM), electrical stimulation evoked large EPSPs at long and variable latencies (100-300 ms). Glutamate microapplication caused an increase in the frequency and amplitude of EPSPs; preliminary results suggest that glutamate microdrops were less likely to evoke EPSPs in tissue from younger patients (8-12 mo) than in slices from patients greater than 4 yr. Evidence for local excitatory synaptic circuits was thus found when synaptic inhibition was partially reduced. 4. After further reduction of inhibition in bicuculline (5-50 microM), electrical stimulation elicited epileptiform bursts. In pairs of simultaneously recorded neurons, bursts were generated synchronously from long-latency EPSPs (100-300 ms) in slices from patients as young as 8 mo. Reflected EPSPs at very long and variable latencies (500-1,100 ms) and repetitive epileptiform bursts could be evoked synchronously in pairs of cells. Glutamate activation of local presynaptic neurons elicited robust epileptiform events in recorded cells. This was seen in slices from patients as young as 16 mo. 5. These data provide physiological evidence for the presence of local inhibitory and excitatory synaptic circuits in human neocortex at least as early as 11 and 8 mo, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)