Angiotensin II (ANG II) is a stimulus for positive chronotropic and inotropic effects, protein synthesis, and hypertrophic growth in cardiac tissue. These short- and long-term effects of ANG II are mediated through specific plasma membrane receptors. Indirect evidence suggests that ANG II synthesized in the myocardium may be important in regulating cardiac function. The cell types in the myocardium that produce components of the renin-angiotensin system have not been determined. In this study, we evaluated whether cultured cardiomyocytes and fibroblasts obtained from ventricles of neonatal rat hearts were capable of synthesizing ANG I and II. Both cardiomyocytes and fibroblasts were found to have immunofluorescent staining for ANG I, ANG II, and angiotensin-converting enzyme (ACE). The amounts of ANG I and II in cell extracts and conditioned media obtained from cardiomyocytes and fibroblasts were quantified by radioimmunoassay. The amounts of ANG I and II detected in cardiomyocyte cultures (1.48 x 10(6) cells/dish) were 32.2 +/- 16.2 (n = 4) and 6.2 +/- 2.9 (n = 4) ng/10(6) cells, respectively. The amounts of ANG I and II detected in the media conditioned by a 48-h exposure to cardiomyocytes were 5.2 +/- 1.2 (n = 3) and 2.1 +/- 1.2 (n = 3) ng/10(6) cells, respectively. The amounts of ANG I and II detected in fibroblast cultures (5.38 x 10(6) cells/dish) were 34.8 +/- 4.9 (n = 4) and 8.0 +/- 3.5 (n = 4) ng/10(6) cells, respectively. The amounts of ANG I and II obtained from media conditioned by a 48-h exposure to fibroblasts were 4.7 +/- 0.6 (n = 4) and 3.3 +/- 2.1 (n = 4) ng/10(6) cells, respectively. The identity of the radioimmunoassayable materials as ANG I and II peptides was confirmed in cardiomyocytes using an in vitro bioassay based on displacement of 125I-ANG II from receptor binding sites in cardiac membranes prepared from neonatal pig heart. Identification of ANG I and II and ACE in vitro in cultures of cardiac myocytes and fibroblasts supports the hypothesis that there is an intracardiac renin-angiotensin system that produces these peptides.