Using a methylcellulose culture system, we studied the effects of recombinant human interleukin-3 (IL-3), recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), and recombinant human granulocyte colony-stimulating factor (G-CSF) on the growth of myeloid progenitor cells (CFU-C) from an adult patient with congenital neutropenia. The moderate clinical course and the maturation arrest at blast-promyelocyte stage in the marrow differentiated this patient from those described as having Kostmann-type congenital neutropenia. CFU-C growth in bone marrow cells from the patient responded to IL-3 normally in a dose-dependent manner. GM-CSF stimulated only macrophage colony formation in a dose-dependent manner comparable to that in normal subjects. Neither GM-CSF nor G-CSF stimulated any significant granulocyte colony formation. This evidence suggests that the hematopoietic progenitor cells in this patient had the potential for developing CFU-C with IL-3, and that the neutropenia in this patient could be a result of an intrinsic defect in myelopoiesis along a granulocytic pathway responsive to GM-CSF or G-CSF.