NADH was metabolized both by serum components and at the cell surface. The metabolism by serum was either oxidation to NAD+, or hydrolysis of the pyrophosphate to yield nicotinamide mononucleotide (reduced) (NMNH) and AMP. NMNH was further hydrolysed to yield nicotinamide riboside (reduced) (NRH), which was stable. NAD+ was hydrolysed (although at a slower rate than was NADH), but was also reduced to yield NADH. The reduction of NAD+ was catalysed by the enzyme serum L(+)lactate dehydrogenase (EC 1.1.1.27) and was dependent on the concentration of L(+)lactate in the serum. NADPH was hydrolysed in a similar manner to NADH but not oxidized by serum. NADH generated from NAD+ by serum derived from human, foetal calf and horse sources was capable of driving the bioreductive activation of CB 1954 by the enzyme DT diaphorase. Cell surfaces oxidized NADH to NAD+, but did not oxidize NADPH or NRH. These observations suggest that NAD(P)H would be unsuitable as a source of reducing equivalents for the bioreductive activation of prodrugs by a reductase enzyme in Antibody Directed Enzyme Prodrug Therapy (ADEPT). In contrast, NAD+ (which could act as a source of NADH) and NRH could avoid the shortcomings of NAD(P)H, and act as suitable cofactors for an enzyme in an ADEPT system.