Blood group A glycolipid antigens have been found based upon at least four different core saccharides (types 1 to 4). The biological significance of this structural polymorphism is not known, although the successful outcome of transplantations of blood group A2 kidneys to blood group O individuals have been partly explained by the low expression of A type-3 and -4 chain glycolipid antigens in A2 kidneys. If graft rejection due to ABO incompatibility is, in any way, correlated to the expression of type-3 and -4 chain blood group glycolipids, it is of interest to identify possible blood group B structures based on these core saccharides. In a non-acid glycosphingolipid fraction isolated from human blood group B kidneys, mass spectrometry, high-temperature gas chromatography-mass spectrometry and probing of thin-layer chromatograms with Gal alpha 1-4Gal-specific Escherichia coli and monoclonal anti-B antibodies provided evidence for minute amounts of a Gal alpha 1-3(Fuc alpha 1-2)Gal beta-HexNAc-Gal alpha 1-4Gal beta-Hex-Ceramide structure consistent with a B type-4 chain heptaglycosylceramide. In contrast, blood group A kidneys have the corresponding A type-4 chain heptaglycosylceramide as the predominant blood group A glycolipid. No, or very low activity of the blood group B gene enzyme on the type-4 chain blood group H hexaglycosylceramide precursor was found by biosynthetic experiments in vitro, which might explain the low expression of type-4 chain blood group B heptaglycosylceramides in human blood group B kidneys.