Molecular genetic studies of the Cdc7 protein kinase and induced mutagenesis in yeast

Genetics. 1992 Sep;132(1):53-62. doi: 10.1093/genetics/132.1.53.

Abstract

The Saccharomyces cerevisiae CDC7 gene encodes a protein kinase that functions in DNA replication, repair, and meiotic recombination. The sequence of several temperature-sensitive (ts) cdc7 mutations was determined and correlated with protein kinase consensus domain structure. The positions of these ts alleles suggests some general principles for predicting ts protein kinase mutations. Pedigree segregation lag analysis demonstrated that all of the mutant proteins are less active or less stable than wild-type Cdc7p. Two new mutations were constructed, one by site-directed and the other by insertional mutagenesis. All of the cdc7 mutants were assayed for induced mutagenesis in response to mutagenic agents at the permissive temperature. Some cdc7 mutants were found to be hypomutable, while others are hypermutable. The differences in mutability are observed most clearly when log phase cells are used. Both hypo- and hypermutability are recessive to wild type. Cdc7p may participate in DNA repair by phosphorylating repair enzymes or by altering chromatin structure to allow accessibility to DNA lesions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alleles
  • Base Sequence
  • Cell Cycle Proteins*
  • Cloning, Molecular
  • Fungal Proteins / genetics*
  • Molecular Sequence Data
  • Mutagenesis, Insertional
  • Mutagenesis, Site-Directed
  • Mutation*
  • Protein Kinases / genetics*
  • Protein Serine-Threonine Kinases*
  • Saccharomyces cerevisiae / enzymology
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae Proteins*
  • Temperature

Substances

  • Cell Cycle Proteins
  • Fungal Proteins
  • Saccharomyces cerevisiae Proteins
  • Protein Kinases
  • CDC7 protein, S cerevisiae
  • Protein Serine-Threonine Kinases