The influence of spaceflight on the distribution of succinate dehydrogenase (SDH) activity throughout the cross section of fibers in the soleus was studied in five male rats and in five rats maintained under ground-based simulated flight conditions (control). The flight (COSMOS 1887) was 12.5 days in duration, and the animals were killed approximately 2 days after return to 1 G. Fibers were classified as slow-twitch oxidative or fast-twitch oxidative-glycolytic in histochemically prepared tissue sections. The distribution of SDH activity throughout the cross section of 20-30 fibers (each type) was determined using quantitative histochemical and computer-assisted image analysis techniques. In all the fibers, the distribution of SDH activity was significantly higher in the subsarcolemmal than in intermyofibrillar region. After spaceflight the entire regional distribution of SDH activity was significantly altered in the slow-twitch oxidative fibers. The fast-twitch oxidative-glycolytic fibers of the spaceflight muscles exhibited a significantly lower SDH activity only in their subsarcolemmal region. These data suggest that when determining the influence of spaceflight on muscle fiber oxidative metabolism enzymes, it is important to consider the location of the enzyme throughout the cross section of a fiber. Furthermore the functional properties of the soleus that depend on the metabolic support of mitochondria in the subsarcolemmal region may be primarily affected by exposure to microgravity.