The organization of sympathetic preganglionic neurons may be a substrate for selective control of sympathetic outflow to different vascular beds. This study was done to determine the spinal segments containing preganglionic neurons controlling discharge of renal, splenic, and mesenteric postganglionic nerves. In urethan-anesthetized rats, preganglionic neurons were stimulated by microinjecting D,L-homocysteic acid (3 nl, 0.17 M) into the lateral gray matter of the third thoracic (T3) to the fourth lumbar (L4) spinal segments. Responses from all three nerves could be elicited from segments T4-T13. The greatest increases in renal nerve discharge were evoked from segments T8-T12, the largest increase of 59 +/- 9% elicited from T10. Increases in splenic and mesenteric nerve discharge were smaller and were evoked more uniformly from T4-L3. The largest increases in discharge of splenic and mesenteric nerves were 19 +/- 5% (from T5) and 26 +/- 4% (from T10), respectively. The widely overlapping spinal cord segments controlling these three organs suggest that location of the preganglionic neurons in different spinal segments is not part of the mechanism for selective sympathetic control. However, the larger renal nerve responses demonstrate that sympathetic output to these organs can be differentiated at the level of the spinal cord.