We investigated the regulatory effects of the vasoconstrictor thromboxane A2 on the proliferation of vascular smooth muscle cells (VSMC) from Wistar-Kyoto rats using 9,11-epithio-11,12-methano-thromboxane A2 (STA2), a stable analogue of thromboxane A2. STA2 dose dependently increased incorporation of [3H]thymidine into DNA in randomly cycling VSMC and significantly shortened the doubling time. Cell cycle analysis revealed that the increased cell cycle progression was primarily due to a rapid transition from the DNA synthetic (S) to the G2/mitotic (M) phase. Moreover, STA2 enhanced protein synthesis in VSMC during the G2/M phase, whereas the protein synthesis was unaffected in the G0/G1 period. In fact, STA2 prompted the cells in G2/M phase to synthesize actin, a major cytoskeleton protein. Conversely, inhibition of protein synthesis by puromycin retarded the transition from S to G2/M. In addition, depolymerization of the actin molecules by cytochalasin D offset the quick progression to the G2/M phase by STA2. These data indicate that thromboxane A2 stimulates the cell cycle progression in VSMC primarily through a rapid transition from S to G2/M. This enhanced progression is attributable partly to a rapid buildup of the cytoskeleton proteins during the G2/M period.