We have investigated the effect of the alkaloid ryanodine on the release of intracellularly stored Ca2+ in response to activation of the osteoclast Ca2+ receptor by the surrogate agonist, Ni2+, Ni2+ (6 mM) in the presence of ethylene-glycol bis-(aminoethyl ether) tetraacetic acid (EGTA) (1.2 mM) and valinomycin (5 microM) induced a transient elevation of cytosolic [Ca2+] in fura 2-loaded osteoclasts. This transient was superimposed upon a small steady elevation of cytosolic [Ca2+] induced by the initial application of valinomycin alone. Ryanodine (10 microM) completely abolished such responsiveness. However, cytosolic [Ca2+] transients were restored when osteoclasts were depolarized by the extracellular inclusion of 100 mM-[K+] in the same solution. Thus, we demonstrate a sensitivity of the osteoclast signal transduction system to ryanodine for the first time to our knowledge.