We tested the preventive effects of catalase, an enzymatic scavenger of hydrogen peroxide, or dimethyl sulfoxide (DMSO), a hydroxyl radical scavenger, on intravenous alloxan-induced lung edema in four groups of pentobarbital sodium-anesthetized, ventilated dogs for 3 h: saline (20 ml.kg-1.h-1) infusion alone (n = 5), alloxan (75 mg/kg) + saline infusion (n = 5), catalase (150,000 U/kg) + alloxan + saline infusion (n = 5), or DMSO (4 mg/kg) + alloxan + saline infusion (n = 5). Catalase or DMSO significantly prevented the increase in plasma thromboxane B2 and 6-keto-prostaglandin F1 alpha over 3 h after alloxan and the accumulation of extravascular lung water after 3 h [3.95 +/- 0.52 (SE) g/g with catalase, 3.06 +/- 0.42 g/g with DMSO] but not early pulmonary arterial pressor response. An electron microscopic study indicated that catalase or DMSO significantly reduced the endothelial cellular damages after alloxan. These findings strongly suggest that hydrogen peroxide and hydroxyl radical are major mediators responsible for intravenous alloxan-induced edematous lung injury in anesthetized ventilated dogs.