The nuclear fraction isolated from Krebs II ascites cells following cell disruption by nitrogen cavitation was separated into four fractions by salt/detergent extraction: NP-40 soluble fraction, 130 mM KCl extract, DOC/Triton x 100 soluble fraction and salt/detergent treated nuclei. The protein composition of the individual fractions was studied by SDS-PAGE and the relative amounts of actin and a 35 kDa protein (p35) were measured from gel scans. There was a time-dependent shift of actin from the 130 mM KCl extract to the NP-40 soluble fraction upon storage of the nuclear fraction on ice, indicating a progressive depolymerization of microfilaments. Compared with actin there was a slower release of p35 into the NP-40 soluble fraction. The results suggest that p35 is not integrated in the microfilament network. Phalloidin, which stabilizes the microfilaments, enriched the amount of both proteins in the 130 mM KCl extracts, together with a series of other proteins in the range 50-205 kDa. The presence of phalloidin also resulted in a large increase in the actin content in both the DOC/Triton x 100 extract and the fraction containing salt/detergent treated nuclei. Incubation of cells with insulin and/or cycloheximide enriched the amount of actin in the 130 mM KCl fraction. The results show that short term incubation of cells with phalloidin, insulin or cycloheximide increases the actin content of the nuclear fraction and also affects the presence of several other proteins.