The present study was conducted to identify the localization and possible contribution of the two estrogen receptor (ER) subtypes in the rat brain at postnatal (P) days 3, 7 and 14. Evaluation of the distribution of ERalpha and ERbeta immunoreactive (ir) nuclei did not reveal gender differences at the developmental point times examined. With the exception of the cerebral cortex, the pattern of staining for these ERs was unchanged across the postnatal ages examined. The distribution of ERalpha-ir nuclei was wider than ERbeta-ir during brain development. From P3, ERbeta and ERalpha-ir nuclei were found in different regions of the cerebral cortex, basal forebrain, amygdala, thalamus, hypothalamus, mesencephalon, pons, cerebellum and medulla oblongata. In addition, ERalpha-ir nuclei were exclusively detected in the hippocampal subfields, epithalamus and in several circumventricular organs. ERalpha and ERbeta dual immunofluorescence revealed positive nuclei in the medial part of the bed nucleus of the stria terminalis, periventricular preoptic nucleus and in caudal aspects of the ventrolateral part of the ventromedial hypothalamic nucleus. Although the functional significance of the dual expression of both ERs within the same nuclei remains unknown, it is possible that ERs play different roles in gene regulation within the same cell. The presence of ERs in diverse brain regions through early postnatal periods supports a potential role for estrogens in neural differentiation.