Imaging single synaptic vesicles undergoing repeated fusion events: kissing, running, and kissing again

Neuropharmacology. 2003 Nov;45(6):797-813. doi: 10.1016/s0028-3908(03)00310-1.

Abstract

At synapses of the mammalian central nervous system, release of neurotransmitter occurs at rates transiently as high as 100 Hz, putting extreme demands on nerve terminals with only tens of functional vesicles at their disposal. Thus, the presynaptic vesicle cycle is particularly critical to maintain neurotransmission. To understand vesicle cycling at the most fundamental level, we studied single vesicles undergoing exo/endocytosis and tracked the fate of newly retrieved vesicles. This was accomplished by minimally stimulating boutons in the presence of the membrane-fluorescent styryl dye FM1-43, then selecting for terminals that contained only one dye-filled vesicle. We then observed the kinetics of dye release during single action potential stimulation. We found that most vesicles lost only a portion of their total dye during a single fusion event, but were able to fuse again soon thereafter. We interpret this as direct evidence of "kiss-and-run" followed by rapid reuse. Other interpretations such as "partial loading" and "endosomal splitting" were largely excluded on the basis of multiple lines of evidence. Our data placed an upper bound of <1.4 s on the lifetime of the kiss-and-run fusion event, based on the assumption that aqueous departitioning is rate limiting. The repeated use of individual vesicles held over a range of stimulus frequencies up to 30 Hz and was associated with neurotransmitter release. A small percentage of fusion events did release a whole vesicle's worth of dye in one action potential, consistent with a classical picture of exocytosis as fusion followed by complete collapse or at least very slow retrieval.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Cells, Cultured
  • Endocytosis / physiology*
  • Exocytosis / physiology*
  • Hippocampus / metabolism
  • Hippocampus / ultrastructure
  • Presynaptic Terminals / metabolism*
  • Presynaptic Terminals / ultrastructure
  • Rats
  • Rats, Sprague-Dawley
  • Synaptic Vesicles / metabolism*
  • Synaptic Vesicles / ultrastructure