A detailed analysis of proton-proton-transfer dynamics under magic angle spinning NMR is presented. Results obtained on model compounds are evaluated under different experimental conditions and NMR mixing schemes. It is shown that the resulting buildup rates can be interpreted in terms of internuclear proton-proton distances provided that an appropriate theoretical description is chosen. As demonstrated in two test applications, these dependencies can be used in the context of a three-dimensional structure determination in the solid state.