The retinoblastoma gene family consisting of RB/p105, p107, and RB2/p130 cooperate to regulate cell-cycle progression through the G1 phase of the cell cycle. Previous data demonstrated an independent role for the reduction or loss of pRb2/p130 expression in the formation and/or progression of lung carcinoma. Rb2/p130 is mutated in a human cell line of lung small cell carcinoma as well as in primary lung tumors. To identify potential pRb2/p130 target genes in an unbiased manner, we have utilized an adenovirus-mediated expression system of pRb2/p130 in a non-small lung cancer cell line to identify specific genes that are regulated by pRb2/p130. Using oligonucleotide arrays, a number of Rb2/p130 downregulated genes were identified and their regulation was confirmed by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. As a result, 40 genes showed greater than 2.0-fold modification in their expression level after the RB2/p130 viral transduction. In conclusion, coupling adenoviral overexpression with microarray and semiquantitative RT-PCR analyses proved to be a versatile strategy for identifying pRb2/p130 target genes and for better understanding the expression profiles of these genes. Our results may also contribute to identifying novel therapeutic biomarkers in lung carcinoma.