We have previously demonstrated that Fes/Fps (Fes) tyrosine kinase is involved in Semaphorin3A-mediated signaling. Here we report a role for Fes tyrosine kinase in microtubule dynamics. A fibrous formation of Fes was observed in a kinase-dependent manner, which associated with microtubules and functionally correlated with microtubule bundling. Microtubule regeneration assays revealed that Fes aggregates colocalized with gamma-tubulin at microtubule nucleation sites in a Fes/CIP4 homology (FCH) domain-dependent manner and that expression of FCH domain-deleted Fes mutants blocked normal centrosome formation. In support of these observations, mouse embryonic fibroblasts derived from Fes-deficient mice displayed an aberrant structure of nucleation and centrosome with unbundling and disoriented filaments of microtubules. Our findings suggest that Fes plays a critical role in microtubule dynamics including microtubule nucleation and bundling through its FCH domain.