Background: Experimental and initial clinical studies suggest that transplantation of circulating blood- (CPC) or bone marrow-derived (BMC) progenitor cells may beneficially affect postinfarction remodeling processes after acute myocardial infarction (AMI). To relate functional characteristics of the infused cells to quantitative measures of outcome at 4-month follow-up, we performed serial contrast-enhanced MRI and assessed the migratory capacity of the transplanted progenitor cells immediately before intracoronary infusion.
Methods and results: In 28 patients with reperfused AMI receiving either BMCs or CPCs into the infarct artery 4.7+/-1.7 days after AMI, serial contrast-enhanced MRI performed initially and after 4 months revealed a significant increase in global ejection fraction (from 44+/-10% to 49+/-10%; P=0.003), a decrease in end-systolic volume (from 69+/-26 to 60+/-28 mL; P=0.003), and unchanged end-diastolic volumes (122+/-34 versus 117+/-37 mL; P=NS). Infarct size, measured as late enhancement (LE) volume, decreased significantly, from 46+/-32 to 37+/-28 mL (P<0.05). There was a significant correlation between the reduction in LE volume and global ejection fraction improvement. The migratory capacity of transplanted cells as assessed ex vivo toward a gradient of vascular endothelial growth factor for CPCs and stromal cell derived factor-1 for BMCs was closely correlated with the reduction of LE volume. By multivariate analysis, migratory capacity remained the most important independent predictor of infarct remodeling.
Conclusions: Analysis of serial contrast-enhanced MRI suggests that intracoronary infusion of adult progenitor cells in patients with AMI beneficially affects postinfarction remodeling processes. The migratory capacity of the infused cells is a major determinant of infarct remodeling, disclosing a causal effect of progenitor cell therapy on regeneration enhancement.