Long-wavelength UV light (UVA) is known to induce transcription of various genes in the cell and to cause a variety of pathological or protective responses in the skin. To find additional UVA-responsive genes, human skin-derived fibroblasts were exposed to UVA under non- or partially lethal conditions, and the effects of UVA on the transcriptional profile were examined by using DNA microarray and RT-PCR. Transcription of several genes including those already known to be UVA-responsive was induced to a significant extent under 50% lethal conditions of exposure. Among those, ATF3 was the most sensitive and its transcription was increased 10-fold within 1h. Even at a non-lethal dose of UVA (8J/cm(2)), it was increased 8-fold, if cells were cultured for 3h post-exposure. Typical immediate-early genes such as c-fos and c-jun were not affected at this dose. We thus suggest that ATF3 could be a key regulator for a variety of cellular responses in the skin, particularly to low doses of UVA.