Aim: To study the oxidative DNA damage to adolescents of hepatocellular carcinoma (HCC) families in Guangxi Zhuang Autonomous Region, China.
Methods: Peripheral leukocytes' DNA 7, 8-dihydro-8-oxoguanine (8-oxoG) and repair enzyme hOGG1 were quantified by flow-cytometry. hOGG1-Cys326Ser single nucleotide polymorphism (SNP) was distinguished by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) assay.
Results: There was a positive correlation between 8-oxoG and repair enzyme hOGG1 expression (P<0.001). HCC children (n=21) in Fusui county had a higher level of hOGG1 (P<0.01) and a lower level of 8-oxoG (P<0.05) than the controls (n=63) in Nanning city. Children in Nanning exposed to passive-smoking had a higher hOGG1 expression (P<0.05) than the non-exposers. 8-oxoG and hOGG1 were negatively correlated with body mass index, while hOGG1 was positively correlated with age. There was a peak of 8-oxoG level nearby the 12 year point. Individuals with the hOGG1 326Ser allele had a significantly marginal higher concentration of leukocyte 8-oxoG level than hOGG1 326Cys allele.
Conclusion: This is the first report using flow-cytometry to simultaneously quantify both the DNA oxidative damage and its repairing enzyme hOGG1. The results provide new insights towards a better understanding of the mechanisms of oxidative stress in a population highly susceptible to hepatocarcinogenesis.