Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats

Drug Metab Dispos. 2003 Nov;31(11):1337-45. doi: 10.1124/dmd.31.11.1337.

Abstract

The aim of this study was to quantitatively determine the constitutive expression levels of various transporter mRNAs in rat choroid plexus. To provide a reference for the relative expression levels, the expression of various transporter mRNAs in choroid plexus were compared with that in liver, kidney, and ileum. The mRNA levels of multidrug resistance protein (Mrp)1, 2, 3, 4, 5, and 6; multidrug resistance (Mdr)1a, 1b, and 2; organic anion transporting polypeptide (Oatp)1, 2, 3, 4, 5, 9, 12, and Oat-K (1/2); organic anion transporter (Oat)1, 2, and 3; organic cation transporter (Oct)1, 2, 3, N1, and N2; bile acid transporters sodium taurocholate cotransporting polypeptide (Ntcp), bile salt excretory protein (Bsep), and ileal bile acid transporter (Ibat); divalent metal transporter 1 (DMT1), Menke's and Wilson's metal transporters; equilibrative nucleotide transporters (Ent) 1 and 2, and constitutive nucleotide transporters (Cnt)1 and 2; peptide transporters (Pept)1 and 2; as well as ATP-binding cassette (Abc)G5 and 8 were measured in choroid plexus by the branched DNA signal amplification method. Mrp1, 4, and 5, Oatp3, Menke's transporter, DMT1, Ent1, and Pept2 mRNAs were expressed in choroid plexus at higher levels than in liver, kidney, or ileum. OctN1 and N2, Oatp2, Oat2 and 3, and Cnt1 and 2 mRNAs expressions were detectable in choroid plexus, but the levels were lower compared with that in liver, kidney, or ileum. The remaining transporters [Mrp2, Mrp3, Oct1, Oct2, Oatp1, Oatp4, Oatp5, Oatp12, Oat-K (1/2), Ntcp, Bsep, Ibat, Mdr1a, Mdr1b, Mdr2, Oat1, Ent2, Pept1, AbcG5, AbcG8] were expressed at very low levels in choroid plexus. The constitutive expression levels of different transporters in choroid plexus may provide an insight into the range of xenobiotics that can potentially be transported by the choroid plexus, thereby providing a means of xenobiotic detoxification in the brain.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Choroid Plexus / metabolism*
  • Female
  • Gene Expression Regulation / physiology*
  • Male
  • Membrane Transport Proteins / biosynthesis*
  • Membrane Transport Proteins / genetics
  • RNA, Messenger / biosynthesis*
  • RNA, Messenger / genetics
  • Rats
  • Rats, Sprague-Dawley
  • Xenobiotics / metabolism*

Substances

  • Membrane Transport Proteins
  • RNA, Messenger
  • Xenobiotics