PAK6 was first identified as an androgen receptor (AR)-interacting protein able to inhibit AR-mediated transcriptional responses. PAK6 is a serine/threonine kinase belonging to the p21-activated kinase (PAK) family implicated in actin reorganization and cell motility, gene transcription, apoptosis, and cell transformation. We investigated the biochemical basis for inhibition of AR signaling by PAK6. We compared the kinase activity of PAK6 with two other well characterized members of the PAK family, PAK1 and PAK4. Like PAK4, PAK6 possesses a constitutive basal kinase activity that, unlike PAK1, is not modulated by the binding of active Rac or Cdc42 GTPases. In order to test the involvement of PAK6 kinase activity in suppression of AR-mediated transcription, we generated kinase-dead (K436A) and kinase-active (S531N) mutants of PAK6. We show that PAK6 kinase activity is required for effective PAK6-induced repression of AR signaling. Suppression does not depend upon GTPase binding to PAK6 and is not mimicked by the closely related PAK1 and PAK4 isoforms. Kinase-dependent inhibition by PAK6 extended to the enhanced AR-mediated transcription seen in the presence of coactivating molecules and to the action of AR coinhibitors. Active PAK6 inhibited nuclear translocation of the stimulated AR, suggesting a possible mechanism for inhibition of AR responsiveness. Finally, we observe that autophosphorylated, active PAK6 protein is differently expressed among prostate cancer cell lines. Modulation of PAK6 activity may be responsible for regulation of AR signaling in various forms of prostate cancer.