A novel and single flow-injection system combined with solid-surface fluorescence detection is proposed in this work for the resolution of a mixture of two widely used pesticides (o-phenylphenol and thiabendazole). The continuous-flow methodology is based on the implementation of on-line pre-concentration and separation of both analytes on the surface of C18 silica gel beads placed just inside the flow cell, implemented with gel-phase fluorimetric multi-wavelength detection (using 305/358 and 250/345 nm as excitation/emission wavelengths for thiabendazole and o-phenylphenol, respectively). The separation of the pesticides was possible owing to the different retention/desorption kinetics of their interactions with the solid support in the zone where the stream impinges on the solid material. No previous separation of the analytes before they reach the flow cell is needed thereby simplifying substantially both the procedure and the manifold. By using a sample volume of 2,600 microL, the system was calibrated in the range 0.5-16 and 5-120 ng mL(-1) with detection limits of 0.09 and 0.60 ng mL(-1) for thiabendazole and o-phenylphenol, respectively. The RSD values (n=10) were about 1% for both analytes. The proposed methodology was applied to environmental water samples and also to various commercial pesticide formulations containing both analytes. Recovery percentages were 97-103% and 98-102% for thiabendazole and o-phenylphenol, respectively.