We evaluated the effects of SEA0400 (2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline), a novel and selective Na+/Ca2+ exchange inhibitor, on ischemic acute renal failure. Ischemic acute renal failure in rats was induced by clamping the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after the contralateral nephrectomy. SEA0400 administration (0.3, 1 and 3 mg/kg, i.v.) before ischemia dose-dependently attenuated the ischemia/reperfusion-induced renal dysfunction and histological damage such as tubular necrosis. SEA0400 pretreatment at the higher dose suppressed the increment of renal endothelin-1 content after reperfusion. The ischemia/reperfusion-induced renal dysfunction was also overcome by post-ischemia treatment with SEA0400 at 3 mg/kg, i.v. In in vitro study, SEA0400 (0.2 and 1 microM) protected cultured porcine tubular cells (LLC-PK1) from hypoxia/reoxygenation-induced cell injury. These findings support the view that Ca2+ overload via the reverse mode of Na+/Ca2+ exchange, followed by endothelin-1 overproduction, plays an important role in the pathogenesis of ischemia/reperfusion-induced renal injury. The possibility exists that a selective Na+/Ca2+ exchange inhibitor such as SEA0400 is useful as effective therapeutic agent against ischemic acute renal failure in humans.