Recently, we have shown that the rabies virus (RV) matrix (M) protein regulates the balance of virus RNA synthesis by shifting synthesis activity from transcription to replication (S. Finke, R. Mueller-Waldeck, and K. K. Conzelmann, J. Gen. Virol. 84:1613-1621, 2003). Here we describe the identification of an M residue critical for regulation of RV RNA synthesis. By analyzing the phenotype of heterotypic RV M proteins with respect to RNA synthesis of RV SAD L16, we identified the M proteins of the RV ERA and PV strains as deficient. Comparison of M sequences suggested that a single residue, arginine 58, was critical. A recombinant virus having this amino acid exchanged with a glycine, SAD M(R58G), has lost the abilities to downregulate RV transcription and to stimulate replication. This resulted in an increase in the transcription rate of more than 15-fold, as previously observed for M deletion mutants. Most importantly, the efficiencies of virus assembly and budding were equal for wild-type M and M(R58G), as determined in assays studying the transient complementation of an M- and G-deficient RV construct, NPgrL. In addition, virus particle density, protein composition, and specific infectivity of SAD L16 and SAD M(R58G) viruses were identical. Thus, we have identified mutations that affect the function of M only in regulation of RNA synthesis, but not in assembly and budding, providing evidence that these functions are genetically separable.