Escherichia coli nucleoside diphosphate kinase (eNDK) is an XTP:XDP phosphotransferase that plays an important role in the regulation of cellular nucleoside triphosphate concentrations. It is also one of several recently discovered DNases belonging to the NM23/NDK family. E. coli cells disrupted in the ndk gene display a spontaneous mutator phenotype, which has been attributed to the mutagenic effects of imbalanced nucleotide pools and errors made by replicative DNA polymerases. Another explanation for the increased mutation rates is that endk- cells lack the nuclease activity of the NDK protein that is essential for a DNA repair pathway. Here, we show that purified, cloned endk is a DNA repair nuclease whose substrate is uracil misincorporated into DNA. We have identified three new catalytic activities in eNDK that act sequentially to repair the uracil lesion: (i) uracil-DNA glycosylase that excises uracil from single-stranded and from U/A and U/G mispairs in double-stranded DNA; (ii) apyrimidinic endonuclease that cleaves double-stranded DNA as a lyase by forming a covalent enzyme-DNA intermediate complex with the apyrimidinic site created by the glycosylase; and (iii) DNA repair phosphodiesterase that removes 3'-blocking residues from the ends of duplex DNA. All three of these activities, as well as the nucleoside-diphosphate kinase, reside in the same protein. Based on these findings, we propose an editing function for eNDK as a mechanism by which the enzyme prevents mutations in DNA.