Complete spinal cord injury (SCI) results in inactivation and unloading of affected skeletal muscles. Unloading causes an increased susceptibility of muscle to contraction-induced injury. This study used magnetic resonance imaging (MRI) to test the hypothesis that isometric contractions would evoke greater muscle damage to the quadriceps femoris muscle (mQF) of SCI subjects than that of able-bodied (AB) controls. MR images were taken of the mQF prior to, immediately post, and 3 days post electromyostimulation (EMS). EMS consisted of five sets of ten isometric contractions (2 s on/6 s off, 1 min between sets) followed by another three sets of ten isometric contractions (1 s on/1 s off, 30 s between sets). Average muscle cross-sectional area (CSA) and the relative areas of stimulated and injured muscle were obtained from MR images by quantifying the number of pixels with an elevated T2 signal. SCI subjects had significantly greater relative area [90 (2)% versus 66 (4)%, P<0.05; mean (SE)] but a lesser absolute area [16 (3) cm(2) versus 44 (6) cm(2), P<0.05] of mQF stimulated than AB controls. During EMS, peak torque was reduced by 66% and 37% for SCI and control subjects, respectively. Three days post EMS, there was a greater relative area of stimulated mQF injured for the SCI subjects [25 (6)% versus 2 (1)%, P<0.05]. Peak torque remained decreased by 22% on day 3 in the SCI group only. These results indicate that affected muscle years after SCI is more susceptible to contraction-induced muscle damage, as determined by MRI, compared to AB controls. They also support the contention that electrically elicited isometric contractions are sufficient to cause muscle damage after a prolonged period of inactivity.