Three promoters, cellular polypeptide chain elongation factor 1 alpha (EF1), cytomegalovirus (CMV), and Rous sarcoma virus (RSV) were examined for stable transgene expression in mouse embryonic stem (ES) cells and their progeny during dopaminergic neural differentiation. In undifferentiated ES cells the EF1 promoter was highly effective, while CMV had moderate activity. After 3 months in culture, expression of humanized renilla green fluorescent protein (hrGFP) was unchanged for the EF1 promoter and decreased for CMV. At the nestin-positive stage of differentiation, hrGFP and nestin were colocalized in about 20% of cells for EF1, in contrast to 80% of cells for the CMV promoter. In tyrosine hydroxylase (TH)-positive neurons neither the EF1 nor CMV promoter were effective. The RSV promoter was inactive in undifferentiated, nestin-positive, and TH-positive cells. Thus, EF1 and CMV are effective promoters for transgene expression in undifferentiated ES cells and nestin-positive neural precursors.