The prefrontal, frontal, and parietal EEG of 16 healthy young adults (seven men, nine women; age=22.57+/-4.2) was recorded during the waking state (eyes closed) in the evening before and the morning following a second consecutive night spent in a sleep laboratory. Following the morning EEG recording session, participants were tested in a human-size maze upon five learning trials of a four-intersection route. Results on the fifth trial served as the learning index. We found a significant positive correlation between time taken to carry out the route and prefrontal, frontal EEG alpha-2 (10.0-12.75 Hz), and sigma (11.5-14.5 Hz) frequency bands. We also found that prefrontal and frontal theta activity correlated negatively with number of errors. No correlation was found between performance and neither alpha-1 (8.0-9.75 Hz) nor parietal EEG activity. These results confirm the involvement of the prefrontal and frontal cortices in the mechanisms responsible for modulating spatial orientation.