Aims: To study left ventricular mechanics of exercise with Doppler and tissue Doppler.
Methods and results: Twenty-one males (mean age, 26; height, 184 cm; weight, 84 kg), exercised on a bicycle, with increasing workload, with oxygen uptake, Doppler flow and tissue Doppler recordings during exercise. There was correlation between peak systolic LVOT flow and annulus velocity; R=0.72, (p<0.001) and between peak mitral E flow and annulus E(a) velocity; R=0.68(p<0.001). Finally there was correlation between peak LVOT and mitral flow velocity; R=0.83(p<0.001) and peak systolic and early diastolic annulus velocity R=0.69(p<0.001). All intervals of the heart cycle decreased with RR-interval. There was a linear relation between diastolic filling and RR-interval, while ejection period was less increased with RR-intervals above 600 ms, and thus not a linear relationship. There was no change in E/E(a) ratio during exercise.
Conclusions: Mechanism for increased filling as well as ejection during exercise seems to be increased contraction and relaxation velocity, with no evidence of Frank-Starling mechanism. Bazett's formula gives a better heart rate correction of LVET at high heart rates than Weissler's.