N-Acetylglucosaminyltransferase IX acts on the GlcNAc beta 1,2-Man alpha 1-Ser/Thr moiety, forming a 2,6-branched structure in brain O-mannosyl glycan

J Biol Chem. 2004 Jan 23;279(4):2337-40. doi: 10.1074/jbc.C300480200. Epub 2003 Nov 14.

Abstract

Mammals contain O-linked mannose residues with 2-mono- and 2,6-di-substitutions by GlcNAc in brain glycoproteins. It has been demonstrated that the transfer of GlcNAc to the 2-OH position of the mannose residue is catalyzed by the enzyme, protein O-mannose beta1,2-N-acetylglucosaminyltransferase (POMGnT1), but the enzymatic basis of the transfer to the 6-OH position is unknown. We recently reported on a brain-specific beta1,6-N-acetylglucosaminyltransferase, GnT-IX, that catalyzes the transfer of GlcNAc to the 6-OH position of the mannose residue of GlcNAcbeta1,2-Manalpha on both the alpha1,3- and alpha1,6-linked mannose arms in the core structure of N-glycan (Inamori, K., Endo, T., Ide, Y., Fujii, S., Gu, J., Honke, K., and Taniguchi, N. (2003) J. Biol. Chem. 278, 43102-43109). Here we examined the issue of whether GnT-IX is able to act on the same sequence of the GlcNAcbeta1,2-Manalpha in O-mannosyl glycan. Using three synthetic Ser-linked mannose-containing saccharides, Manalpha1-Ser, GlcNAcbeta1,2-Manalpha1-Ser, and Galbeta1,4-GlcNAcbeta1,2-Manalpha1-Ser as acceptor substrates, the findings show that (14)C-labeled GlcNAc was incorporated only into GlcNAcbeta1,2-Manalpha1-Ser after separation by thin layer chromatography. To simplify the assay, high performance liquid chromatography was employed, using a fluorescence-labeled acceptor substrate GlcNAcbeta1,2-Manalpha1-Ser-pyridylaminoethylsuccinamyl (PAES). Consistent with the above data, GnT-IX generated a new product which was identified as GlcNAcbeta1,2-(GlcNAcbeta1,6-)Manalpha1-Ser-PAES by mass spectrometry and (1)H NMR. Furthermore, incorporation of an additional GlcNAc residue into a synthetic mannosyl peptide Ac-Ala-Ala-Pro-Thr(Man)-Pro-Val-Ala-Ala-Pro-NH(2) by GnT-IX was only observed in the presence of POMGnT1. Collectively, these results strongly suggest that GnT-IX may be a novel beta1,6-N-acetylglucosaminyltransferase that is responsible for the formation of the 2,6-branched structure in the brain O-mannosyl glycan.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain / enzymology
  • Brain Chemistry*
  • Humans
  • Mannose / analogs & derivatives
  • Mannose / chemistry*
  • N-Acetylglucosaminyltransferases / chemistry*
  • N-Acetylglucosaminyltransferases / metabolism
  • Nerve Tissue Proteins / chemistry*
  • Nerve Tissue Proteins / metabolism
  • Polysaccharides / chemistry
  • Polysaccharides / metabolism
  • Substrate Specificity

Substances

  • Nerve Tissue Proteins
  • Polysaccharides
  • MGAT5B protein, human
  • N-Acetylglucosaminyltransferases
  • Mannose