The [(99m)Tc(N)(PNP)](2+) metal fragment: a technetium-nitrido synthon for use with biologically active molecules. The N-(2-methoxyphenyl)piperazyl-cysteine analogues as examples

Bioconjug Chem. 2003 Nov-Dec;14(6):1231-42. doi: 10.1021/bc034100g.

Abstract

The incorporation of a bioactive molecule into a nitrido-containing (99m)Tc-complex has been successfully achieved by using the [TcN(PNP)](2+) metal fragment. In this strategy, the strong electrophilic [TcN(PNP)](2+) metal fragment efficiently reacts with bifunctional chelating ligands having a pi-donor atom set, such as N-functionalized O,S-cysteine. The 2-methoxyphenylpiperazine (2-MPP) pharmacophore, which displays preferential affinity for 5HT(1A) receptors, was conjugated to the amino group of cysteine to obtain 2-MPPP-cys-OS, where 2-MPPP is 3-[4-(2-methoxyphenyl)piperazin-1-yl]propionate. The asymmetric Tc(V)-nitrido complexes, [(99g/99m)Tc(N)(PNP)(2-MPPP-cys-OS)] (PNP = PNP3, PNP4), were obtained in high yield (95%), by simultaneous addition of PNP and 2-MPPP-cys-OS ligand to a solution containing a starting (99g)/(99m)Tc-nitrido precursor. A mixture of syn and anti isomers was observed, the latter being the thermodynamically favored species. In vitro challenge experiments using the anti isomers with glutathione and cysteine indicated that no transchelation reaction occurs. Assessment of the in vitro 5HT(1A) receptor-affinity of the technetium complexes revealed that only the anti-PNP4 complex possesses some affinity for the receptor, but displayed negligible brain uptake in biodistribution studies in rats in vivo.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cysteine / analogs & derivatives*
  • Cysteine / chemistry
  • Cysteine / pharmacokinetics
  • Female
  • Ligands
  • Molecular Structure
  • Organotechnetium Compounds / chemical synthesis*
  • Organotechnetium Compounds / pharmacokinetics*
  • Radiopharmaceuticals / chemical synthesis
  • Radiopharmaceuticals / pharmacokinetics
  • Rats
  • Rats, Sprague-Dawley
  • Technetium / chemistry*
  • Tissue Distribution

Substances

  • Ligands
  • Organotechnetium Compounds
  • Radiopharmaceuticals
  • Technetium
  • Cysteine