Background: First trimester increased fetal nuchal translucency is associated with fetal aneuploidies. One of the mechanisms of pathophysiology could be an abnormal extracellular matrix facilitating the formation of an interstitial edema. A previous study investigating interstitial edema in first trimester fetuses found large amounts of hyaluronan in the skin of fetuses with trisomy 21. The aim of this study was to establish distribution patterns for a number of other glycosaminoglycans-dermatan, heparan and keratan sulphate, chondroitin-6-sulphate and chondroitin-4-sulphate proteoglycan-in the nuchal skin of normal and chromosomally abnormal fetuses at 11-14 weeks. We also investigated whether biglycan (BGN), which is located on chromosome X, is underexpressed in fetuses with Turner syndrome. Decorin (DCN), a similar-sized proteoglycan located on chromosome 12, was taken as a control.
Methods: We studied the distribution and concentration of various extacellular matrix components using immunohistochemistry, a double staining technique, in-situ hybridization, Northern and Western blot analysis.
Results: Chondroitin-6-sulphate and chondroitin-4-sulphate proteoglycan were increased in Turner syndrome fetuses and BGN seemed to be underexpressed compared with normal controls, while DCN was not. Dermatan, heparan and keratan sulphate showed no significant abnormal distribution in trisomies 21, 18, 13, or in Turner syndrome, compared with normal. Western and immunohistochemical analysis revealed that absence of a second X chromosome, as is the case in Turner syndrome, affects BGN protein pattern.
Conclusions: An abnormal amount of glycosaminoglycans and proteoglycans presumably contributes to increased nuchal translucency.