Metabolism of high density lipoprotein lipids by the rat liver: evidence for participation of hepatic lipase in the uptake of cholesteryl ester

J Lipid Res. 1992 Nov;33(11):1689-98.

Abstract

In order to determine the role of hepatic lipase in the hepatic uptake and metabolism of high density lipoprotein (HDL) triglycerides, cholesteryl esters, and phospholipids, isolated rat livers were perfused with a reconstituted HDL (rHDL) radiolabeled with [3H]triolein and [14C]cholesteryl oleate or palmitoyl-[14C]linoleoyl phosphatidylcholine. A bolus of radiolabeled rHDL was injected into the portal vein and livers were perfused for 5 min using a nonrecirculating perfusion system. Recovery of rHDL triolein in the liver as intact triolein was used to determine the amount of unmetabolized rHDL remaining in the liver. After correcting for the amount of unmetabolized rHDL remaining in the liver, about 30% of the rHDL triolein was hydrolyzed of which 19% was recovered in the liver and 11% in the perfusate. Moreover, about 7% of the rHDL phosphatidylcholine was hydrolyzed to lysophosphatidylcholine, all of which was recovered in the perfusate. Although there was no hydrolysis of rHDL cholesteryl oleate, about 30% of the cholesteryl oleate was taken up by the liver. Preperfusion of the liver with heparin to deplete the liver of hepatic lipase resulted in about a 70% reduction in rHDL triolein hydrolysis and about a 75% reduction in rHDL cholesteryl oleate uptake. Although hepatic lipase hydrolyzes both triglycerides and phosphatidylcholines, elimination of the triolein from rHDL had no effect on the uptake of rHDL cholesteryl oleate, but replacement of the rHDL phosphatidylcholine with a nonhydrolyzable phosphatidylcholine diether resulted in an 87% reduction in cholesteryl oleate uptake. These results indicate that hepatic lipase is necessary for the hepatic uptake of both HDL triglycerides and cholesteryl esters and that the uptake of cholesteryl esters is not dependent on the hydrolysis of HDL triglycerides but is dependent on the hydrolysis of HDL phospholipids.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Biological Transport, Active
  • Cholesterol Esters / metabolism
  • In Vitro Techniques
  • Lipase / metabolism*
  • Lipoproteins, HDL / metabolism*
  • Liver / metabolism*
  • Male
  • Perfusion
  • Phosphatidylcholines / metabolism
  • Phospholipids / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Triglycerides / metabolism
  • Triolein / metabolism

Substances

  • Cholesterol Esters
  • Lipoproteins, HDL
  • Phosphatidylcholines
  • Phospholipids
  • Triglycerides
  • Triolein
  • Lipase