Relationship between soil organic C degradability and the evolution of the delta13C signature in profiles under permanent grassland

Rapid Commun Mass Spectrom. 2003;17(23):2591-6. doi: 10.1002/rcm.1202.

Abstract

The main objective of this research was to investigate to what extent the potential C dynamics of soil organic matter (SOM) are related to the degree of 13C enrichment with increasing depth in soil profiles under permanent grassland. The evolution of the C content and the 13C natural abundance (delta13C value) of SOM were investigated in three soil profiles (0-40 cm depth) under permanent grassland of varying texture (a loamy sand, a loam and a clay loam soil). The delta13C value of the SOM showed a gradual increase with increasing depth and decreasing C content in the profiles, ranging from 1.9 per thousand (loamy sand soil), 2.9 per thousand (clay loam soil) and 4 per thousand (loam soil) in relation to the delta13C value of SOM at the surface. The relationship between the 13C enrichment and total organic C content at different depths in the profiles (down to 40 cm depth in the loam and clay loam soil, down to 25 cm depth in the loamy sand soil) could be well described by the Rayleigh equation. The enrichment factors epsilon, associated with the Rayleigh approximation of the data, ranged from -1.57 per thousand (clay loam soil) to -1.64 per thousand (loamy sand soil) and -1.91 per thousand (loam soil). The potential C dynamics in four depth intervals from the profiles (0-10, 10-20, 20-30 and 30-40 cm depth) were determined by means of an incubation experiment. The C decomposition rate constants from the four sampling depths in the profiles showed a significant, positive correlation (y = 0.21x + 0.018, R(2) = 0.66, p < 0.005) with the corresponding Deltadelta13C values (change of the delta13C value per depth increment). A better correlation was obtained when only the data from the upper 20 cm in the profiles (y = 0.21x + 0.019, R(2) = 0.78, p < 0.05) were considered. These results suggest that the Deltadelta13C values in the surface layers of profiles under permanent grassland may serve as an indicator of the potential degradability or the stability of the SOM (in terms of C decomposition rate constants).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Belgium
  • Carbon / analysis*
  • Carbon Isotopes
  • Mass Spectrometry
  • Plants / chemistry
  • Poaceae / chemistry
  • Poaceae / metabolism*
  • Soil / analysis*

Substances

  • Carbon Isotopes
  • Soil
  • Carbon