We examined the effect of galanin (10(-15) - 10(-7) M) on dispersed, mainly small-sized dorsal root ganglion (DRG) neurons in adult rats using whole-cell patch-clamp. Galanin and AR-M1896, a selective galanin type 2 receptor (GalR2) agonist, both significantly increased the number of action potentials in response to current pulses in 77% of the neurons, indicating an increase in excitability. Galanin also caused a rise in input resistance, decreased the holding current for -60 mV and depolarized the resting potential. In addition, Ca(2+) currents elicited by voltage steps were significantly increased by both galanin and AR-M1896 in nearly 70% of the cells. This enhancement was observed in 30% of the neurons in the presence of nimodipine or omega-conotoxin, but in each case approximately 60% less than without blocking either N- or L-type Ca(2+) channels, indicating modulation of both types of Ca(2+) channels. The percentage of small- and medium-sized neurons expressing GalR2 mRNA in DRGs in situ was similar to that showing increased excitability and Ca(2+) current after galanin application, i.e. approximately 70-80% of the neurons. The findings suggest that GalR2 has a role in controlling both the excitability, probably by inhibition of GIRK or leak K(+) channels, and Ca(2+) entry in a large population of presumably nociceptive neurons. The combination of the two effects, which possibly arise from separate biochemical pathways, would increase excitability and enhance intracellular Ca(2+) signalling which would enhance sensory transmission. These mechanisms involving GalR2 receptors may underlie the pronociceptive effects of galanin described in the literature.