Objective: To develop a new method to describe cervical spine curvature and evaluate the potential for injury in the upper and lower cervical spine during simulated whiplash.
Design: A method was developed to integrate the upper and lower cervical spine rotations and describe the spine curvature.
Background: In vivo and in vitro whiplash simulations have documented the development of an S-shape curvature with simultaneous upper cervical spine flexion and lower cervical spine extension immediately following rear-impact. Investigators have hypothesized that the injury potential is highest during the S-shape phase. However, little data exist on the spine curvature during whiplash and its relation to spine injury.
Methods: A biofidelic model and a bench-top whiplash apparatus were used in an incremental rear-impact protocol (maximum 8 g) to simulate whiplash of increasing severity. To describe the spine curvature, the upper and lower cervical spine rotations were normalized to corresponding physiological limits.
Results: Average peak lower cervical spine extension first exceeded the physiological limits (P<0.05) at a horizontal T1 acceleration of 5 g. Average peak upper cervical spine extension exceeded the physiological limit at 8 g, while peak upper cervical spine flexion never exceeded the physiological limit. In the S-shape phase, lower cervical spine extension reached 84% of peak extension during whiplash.
Conclusions: Both the upper and lower cervical spine are at risk for extension injury during rear-impact. Flexion injury is unlikely.