Transfection of airway epithelium by stable PEGylated poly-L-lysine DNA nanoparticles in vivo

Mol Ther. 2003 Dec;8(6):936-47. doi: 10.1016/j.ymthe.2003.07.007.

Abstract

DNA can be compacted using polyethylene glycol-substituted poly-L-lysine into discrete unimolecular (with respect to DNA) nanoparticles with minor diameter < 20 nm that are stable in normal saline for at least 23 months at 4 degrees C. We compared the activity of firefly luciferase in lungs of C57BL/6 mice that received 100 microg compacted plasmid in 25 microl saline (shown to be the optimal dose) via intratracheal or intranasal instillation with levels in animals given 100 microg naked plasmid or in untreated mice. Mice dosed with compacted DNA nanoparticles had peak activity of luciferase in lung at 2 days postinstillation, which declined in log-linear fashion with a half-life of 1.4 days. Luciferase activity in animals dosed with naked DNA was 200-fold less. Addition of polyethylene glycol to the complex was necessary for efficient gene transfer and animals that received DNA compacted with unmodified poly-L-lysine did not exhibit luciferase activity above background. Immunohistochemical staining for bacterial beta-galactosidase 2 days after administration of a compacted lacZ expression plasmid (n = 8) revealed expression predominantly in the dependent portions of the right lungs of mice, in alveolar and airway epithelial cells, though macrophages and sometimes endothelial cells also were transfected. No staining for beta-galactosidase was observed in uninjected animals (n = 4) or those dosed with naked lacZ plasmid (n = 7). Tissue survey for transgene expression shows expression only in lung and trachea following intranasal administration. Stable compacted DNA nanoparticles transfer exogenous genes to airway epithelium and show promise for lung gene therapy.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Administration, Intranasal
  • Animals
  • Bronchi / metabolism*
  • DNA / administration & dosage
  • DNA / metabolism*
  • Epithelium / metabolism
  • Genes, Reporter
  • Immunohistochemistry
  • Intubation, Intratracheal
  • Mice
  • Polyethylene Glycols / metabolism*
  • Polylysine / metabolism*
  • Transfection*

Substances

  • Polylysine
  • Polyethylene Glycols
  • DNA