Objective: Monocyte chemoattractant protein 1 (MCP-1) could contribute to enhanced leukocyte recruitment and activation resulting in chronic tissue damage. However, little is known about the molecular mechanisms of cardiac MCP-1 expression. To elucidate these molecular mechanisms, angiotensin II-induced expression of MCP-1 was examined in cultured rat neonatal ventricular cardiomyocytes and fibroblasts by adenovirus gene transfer.
Methods and results: MCP-1 mRNA increased 3.6-fold in cardiac fibroblasts at 3 hours after 100 nmol/L angiotensin-II stimulation (P<0.01), whereas MCP-1 mRNA in cardiomyocytes was unchanged. Angiotensin II significantly enhanced JNK, p38MAPK, and nuclear factor-kappaB (NF-kappaB) activities of cardiac fibroblasts. Wild-type ASK-1 increased MCP-1 expression of cardiac fibroblasts, whereas dominant negative mutant of ASK-1 (DN-ASK), dominant negative mutant of p38MAPK (DN-p38MAPK), and pyrrolidine dithiocarbamate significantly inhibited such expression. The increased MCP-1 mRNA expression in wild-type ASK-1 transfected fibroblasts was inhibited by cotransfection with adenovirus expressing DN-p38MAPK. On the contrary, the decreased MCP-1 mRNA expression in DN-ASK transfected cells was increased by cotransfection with adenovirus expressing constitutively active MKK6.
Conclusions: Angiotensin II induced MCP-1 gene expression in cardiac fibroblasts. The angiotensin II-induced activation of ASK-1 followed by p38MAPK and NF-kappaB signaling in cardiac fibroblasts is partially involved in myocardial MCP-1 expression.