Epstein-Barr virus latent infection membrane protein 1 TRAF-binding site induces NIK/IKK alpha-dependent noncanonical NF-kappaB activation

Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):141-6. doi: 10.1073/pnas.2237183100. Epub 2003 Dec 22.

Abstract

Epstein-Barr virus (EBV) latent infection membrane protein 1 (LMP1)-induced NF-kappaB activation is important for infected cell survival. LMP1 activates NF-kappaB, in part, by engaging tumor necrosis factor (TNF) receptor-associated factors (TRAFs), which also mediate NF-kappaB activation from LTbetaR and CD40. LTbetaR and CD40 activation of p100/NF-kappaB2 is now known to be NIK/IKKalpha-dependent and IKKbeta/IKKgamma independent. In the experiments described here, we found that EBV LMP1 induced p100/NF-kappaB2 processing in human lymphoblasts and HEK293 cells. LMP1-induced p100 processing was NIK/IKKalpha dependent and IKKbeta/IKKgamma independent. Furthermore, the LMP1 TRAF-binding site was required for p100 processing and p52 nuclear localization, whereas the LMP1 death domain-binding site was not. Moreover, the LMP1 TRAF-binding site preferentially caused RelB nuclear accumulation. In murine embryo fibroblasts (MEFs), IKKbeta was essential for LMP1 up-regulation of macrophage inflammatory protein (MIP)-2, TNFalpha, I-TAC, ELC, MIG, and CXCR4 RNAs. Interestingly, in IKKalpha knockout MEFs, LMP1 hyperinduced MIP-2, TNFalpha, and I-TAC expression, consistent with a role for IKKalpha in down-modulating canonical IKKbeta activation or its effects. In contrast, LMP1 failed to up-regulate CXCR4 and MIG RNA in IKKalpha knockout MEFs, indicating a dependence on noncanonical IKKalpha activation. Furthermore, LMP1 up-regulation of MIP-2 RNA in MEFs was both IKKbeta- and IKKgamma-dependent, whereas LMP1 upregulation of MIG and I-TAC RNA was fully IKKgamma independent. Thus, LMP1 induces typical canonical IKKbeta/IKKgamma-dependent, atypical canonical IKKbeta-dependent/IKKgamma-independent, and noncanonical NIK/IKKalpha-dependent NF-kappaB activations; NIK/IKKalpha-dependent NF-kappaB activation is principally mediated by the LMP1 TRAF-binding site.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • B-Lymphocytes / metabolism
  • B-Lymphocytes / virology
  • Binding Sites / genetics
  • Cell Line
  • Epithelial Cells / cytology
  • Epithelial Cells / metabolism
  • Herpesvirus 4, Human / genetics
  • Herpesvirus 4, Human / metabolism*
  • Herpesvirus 4, Human / pathogenicity
  • Humans
  • I-kappa B Kinase
  • Mice
  • Models, Biological
  • NF-kappa B / metabolism*
  • NF-kappaB-Inducing Kinase
  • Protein Processing, Post-Translational
  • Protein Serine-Threonine Kinases / metabolism*
  • Proteins / metabolism*
  • RNA / genetics
  • RNA / metabolism
  • TNF Receptor-Associated Factor 1
  • Viral Matrix Proteins / chemistry*
  • Viral Matrix Proteins / genetics
  • Viral Matrix Proteins / metabolism*

Substances

  • EBV-associated membrane antigen, Epstein-Barr virus
  • NF-kappa B
  • Proteins
  • TNF Receptor-Associated Factor 1
  • Viral Matrix Proteins
  • RNA
  • Protein Serine-Threonine Kinases
  • CHUK protein, human
  • Chuk protein, mouse
  • I-kappa B Kinase
  • IKBKB protein, human
  • IKBKE protein, human
  • Ikbkb protein, mouse
  • Ikbke protein, mouse