Recently published studies of islet cell function reveal unexpected features of glucagon-like peptide-1 (GLP-1) receptor-mediated signal transduction in the pancreatic beta-cell. Although GLP-1 is established to be a cAMP-elevating agent, these studies demonstrate that protein kinase A (PKA) is not the only cAMP-binding protein by which GLP-1 acts. Instead, an alternative cAMP signaling mechanism has been described, one in which GLP-1 activates cAMP-binding proteins designated as cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs, also known as Epac). Two variants of Epac (Epac1 and Epac2) are expressed in beta-cells, and downregulation of Epac function diminishes stimulatory effects of GLP-1 on beta-cell Ca(2+) signaling and insulin secretion. Of particular note are new reports demonstrating that Epac couples beta-cell cAMP production to the stimulation of fast Ca(2+)-dependent exocytosis. It is also reported that Epac mediates the cAMP-dependent mobilization of Ca(2+) from intracellular Ca(2+) stores. This is a process of Ca(2+)-induced Ca(2+) release (CICR), and it generates an increase of [Ca(2+)](i) that may serve as a direct stimulus for mitochondrial ATP production and secretory granule exocytosis. This article summarizes new findings concerning GLP-1 receptor-mediated signal transduction and seeks to define the relative importance of Epac and PKA to beta-cell stimulus-secretion coupling.