Chemical carcinogenicity has been the target of a large array of attempts to create alternative predictive models, ranging from short-term biological assays (e.g. mutagenicity tests) to theoretical models. Among the theoretical models, the application of the science of structure-activity relationships (SAR) has earned special prominence. A crucial element is the independent evaluation of the predictive ability. In the past decade, there have been two fundamental comparative exercises on the prediction of chemical carcinogenicity, held under the aegis to the US National Toxicology Program (NTP). In both exercises, the predictions were published before the animal data were known, thus using a most stringent criterion of predictivity. We analyzed the results of the first comparative exercise in a previous paper [Mutat. Res. 387 (1997) 35]; here, we present the complete results of the second exercise, and we analyze and compare the prediction sets. The range of accuracy values was quite large: the systems that performed best in this prediction exercise were in the range 60-65% accuracy. They included various human experts approaches (e.g. Oncologic) and biologically based approaches (e.g. the experimental transformation assay in Syrian hamster embryo (SHE) cells). The main difficulty for the structure-activity relationship-based approaches was the discrimination between real carcinogens, and non-carcinogens containing structural alerts (SA) for genotoxic carcinogenicity. It is shown that the use of quantitative structure-activity relationship models, when possible, can contribute to overcome the above problem. Overall, given the uncertainty linked to the predictions, the predictions for the individual chemicals cannot be taken at face value; however, the general level of knowledge available today (especially for genotoxic carcinogens) allows qualified human experts to operate a very efficient priority setting of large sets of chemicals.